

Vicor 新一代电源方案在智能制造领域的应用

Yuxin Peng May 2020

©2019 Vicor

Catalog

- About Vicor Corporation
- Robotics market
- New generation isolated power module DCM turnkey solution.

2

About Vicor Corporation

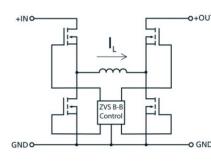
What is important to you?

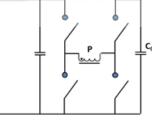
- Differentiating your product and improving your customers' satisfaction
- Bringing your product to market faster
- Adapting rapidly to changing design goals
- Using fewer development resources

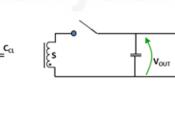
- Vicor can help you meet your goals!
- Technology leadership
 - Small size, low profile
- Efficiency
- Scalability
- Breadth of product
- Right-first-time development
- Online tools
- Technical support

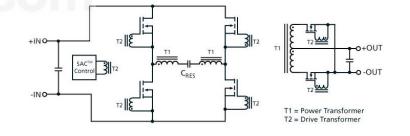
Topology and control

ZVS Regulator Non-isolated, DC-DC regulator


- Pre-Regulator Module (PRM)
- Cool-Power ZVS
 - Buck
 - Boost
 - Buck-Boost


Double-Clamped ZVS (DC-ZVS) Isolated, regulated, DC-DC or AC-DC converter


- DC Converter Module (DCM)
- Cool-Power Converters
- Power Factor Module (PFM)


Sine Amplitude Converter (SAC) Isolated, fixed-ratio, DC-DC transformer

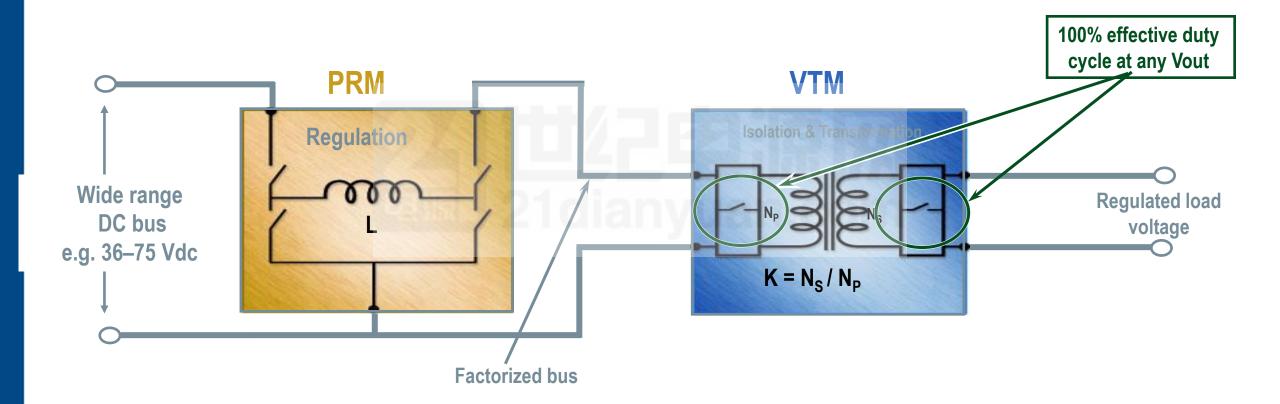
- Bus Converter Module (BCM)
- Intermediate Bus Converter (IBC)
- Voltage Transformation Module

Increasing power density 25% every 2 years

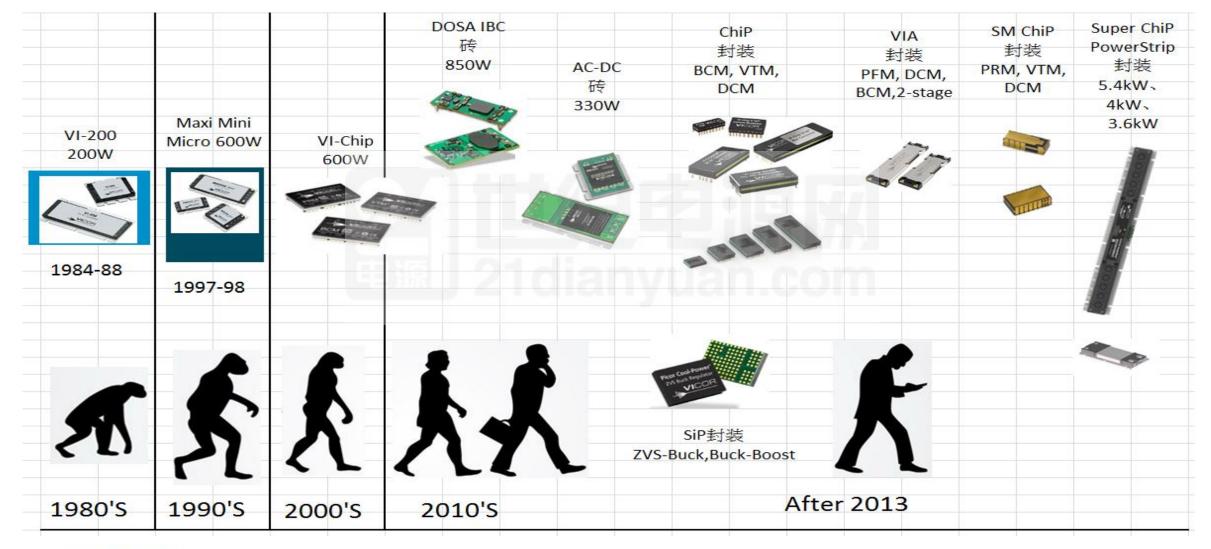
Reducing power losses 25% every 2 years

5

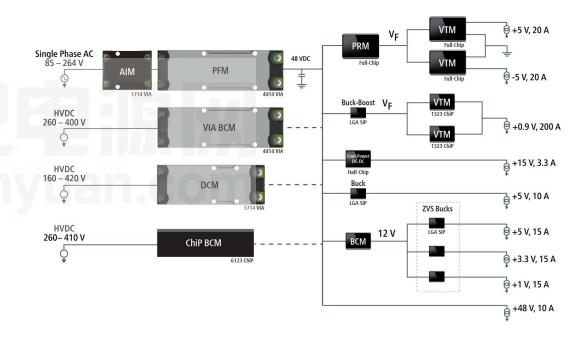
Packaging technology


VIA Vicor Integrated Adapter

ChiP Converter Housed in Package SiP System in Package



Factorized Power Architecture 分比架构



Vicor 近四十年的产品演进

Vicor power component design methodology: An optimized approach to power design

- Optimized, modular system building blocks
- Isolated, non-isolated
- AC-input, DC-input
- Regulated, non-regulated
- High voltage, low voltage
- An IC approach to higher power system integration
- Integrated power modules from 25W to over 1,000W
- Input operating voltages from 8V to over 420V (per module)

Example power chain option using power component design methodology

VICOR

9

Markets and applications

- Aircraft test equipment
- Reconnaissance / Targeting Systems
- Radio / Telemetry Systems
- Secure Communications Systems
- Ground Vehicles

- Wireless & Satellite Base Stations
- Broadcast
 Equipment
- Power Amplifiers
- Microwave
 Communication
- Remote Telemetry Communication

- Enterprise Servers
- Optical Switchers
- Data Storage
 Systems
- Network Servers
- Super Computers
- Transportation/ Railroad

Automation

Process Control

ATE

Energy

Lighting

Factory

- Electric / Hybrid
 Vehicles
- Commercial / Aftermarket

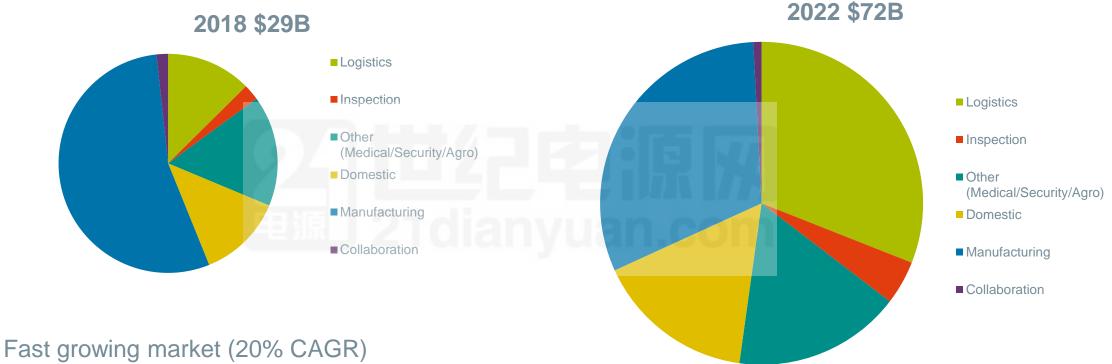
About Vicor

Founded in 1981 on a platform of innovation

- 170+ patents on power trains, control systems, components and packaging technology
- 16% of gross revenue re-invested in R&D
- High density, high efficiency modular solutions to power system requirements
 - From the power source to the point of load
 - Architectural options, optimal component selection and online simulation tools

©2018 Vicor

Robotics Market


LAWS OF ROBOTICS

- A robot may not injure a human being or, by failing to act, allow a human being to come to harm.
- A robot must obey orders given to it by human beings, except where carrying out those orders would break the First Law.
- A robot must protect its own existence, as long as the things it does to protect itself do not break the First or Second Law

Isaac Asimov, 1942

Robotics WW sales projections

Significant size Logistics – autonomous ground vehicles (AGV) growing fastest Non-domestic use robotics markets value Vicor attributes

Source: www.ifr.org 2019

Challenges for Robotics Manufacturers

Service Robots:

Logistics

More autonomy Improved safety Extend range

Inspection

Reliability in harsh environments Smaller, for confined spaces Longer battery life or tether

Security

Extend operation time Safety around humans Increased functionality (AI)

Industrial Robots

Manufacturing

Faster Processing (AI) Reduce downtime SMART, green factories High reliability and safety Improved aesthetics (small size) More functionality

Cobots

15

Autonomous Warehouse Robot Market

IoT and Industry 4.0 driving trend to SMART factories Logistics between production lines and warehouses becoming automated Flexibility required to allow personalization and lot sizes down to one

Typical Market Challenges:

- End customers require rapid, low cost fulfillment
- Shortage of labor in warehouse and delivery (facilitate older workers?)
- Operation in a complex, changing environment

Security Robot Market

Increases in the cost of labor and shortages of manpower drive up demand Sensor and AI technology now make operation around humans possible

Typical Challenges:

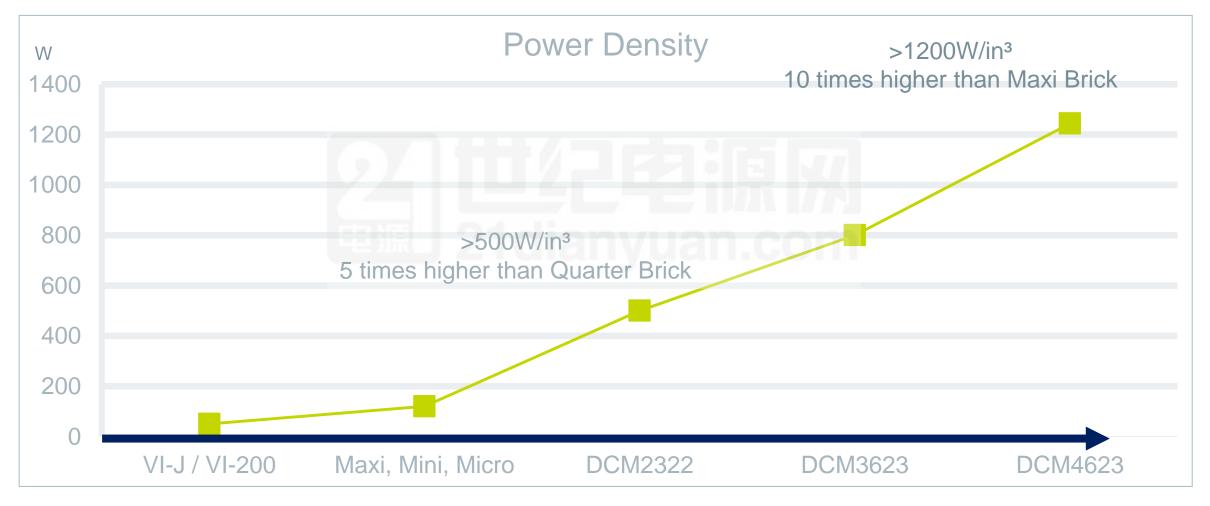
- Reliable operation in sometimes harsh environments
- Autonomous operation 24 hours a day is required

Actual Documented Successes:

Detection of armed robbery, burglaries and hit and run incidents (recorded as evidence by on-board sensors)

DCM2322 Product Materials

DCM family overview


Family of DCM Products

= Also Available in VIA™ package

Nominal Input (V)	Package Size	Power (W) by Nominal Output Voltage (V)								
		3.3	5	12	13.8	15	24	28	36	48
300 (180 – 420)	4623 ChiP or 3714 VIA			400	500		600	500		500
290 (160 – 420)	4623 ChiP				600					
275 (120 – 420)	4623 ChiP	110	190	375		375	375	375		375
270 (160 – 420)	4623 ChiP or 3714 VIA	150	250	500		500	500	500		500
270 (180 – 400)	5614 VIA							1300		
100 (43 – 154)	3623 ChiP	80	120	240	-	240	240	240		240
100 (43 – 154)	2322 ChiP	40	60	120		120	120	120		120
48 (36 – 75)	3623 ChiP or 3414 VIA		160	320		320	320	320	320	320
43 (14 – 72)	2322 ChiP	35	50	100		100	100	100		100
42 (9 – 75)	3623 ChiP			80		80	80	80		80
30 (9 – 50)	3623 ChiP	80	80	160		160	160	160		160
30 (9 – 50)	2322 ChiP			60		60	60	60		60
28 (16 – 50)	3623 ChiP or 3414 VIA	120	180	320		320	320	320		320
24 (18 – 36)	3623 ChiP		180	320		320	320	320	320	320

Vicor innovates ahead of the power density curve

Power density is the key to success

Half Brick: 300W

DCM3623: 240W

480W in 2/3 area of 300W ¹/₂ Brick

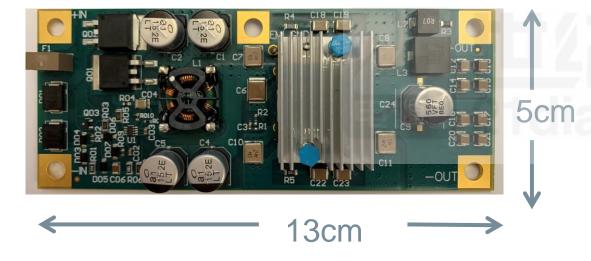
240W in ½ area of 150W Quarter Brick

110V 输入的Vicor 三代产品的比较

Parameter	VI-J00 DC-DC Converter Module VICOR VI-JT3-CW	V110C24T100BG	СМ3623TA5N26B4T70
Input / Output Voltage	66-160V _{IN} /24 V _{OUT}	66-154V _{IN} / 24 V _{OUT}	43-154V _{IN} / 24 V _{OUT}
Power	100W	100 W	120 W
Efficiency	85%	87.4%	90.6%
Dimensions	61 x 57.9 x 12.7mm	57.9 x 36.8 x12.7 mm	24.84 x 22.8 x 7.21 mm
Trim range	50%~110%	10%~110%	60%~110%
Solution Power Density	50 W/in ³	91 W/in ³	532 W/in ³
Operating Temp. Range	-40° C to +100° C	-40°C to +100°C	-40°C to +125°C
MTBF(70°C case temp)	1.60Mhrs	1.19MHrs	1.71Mhrs

Vicor-DCM-family

DCM2322 – Isolated, Regulated, DC-DC Converter

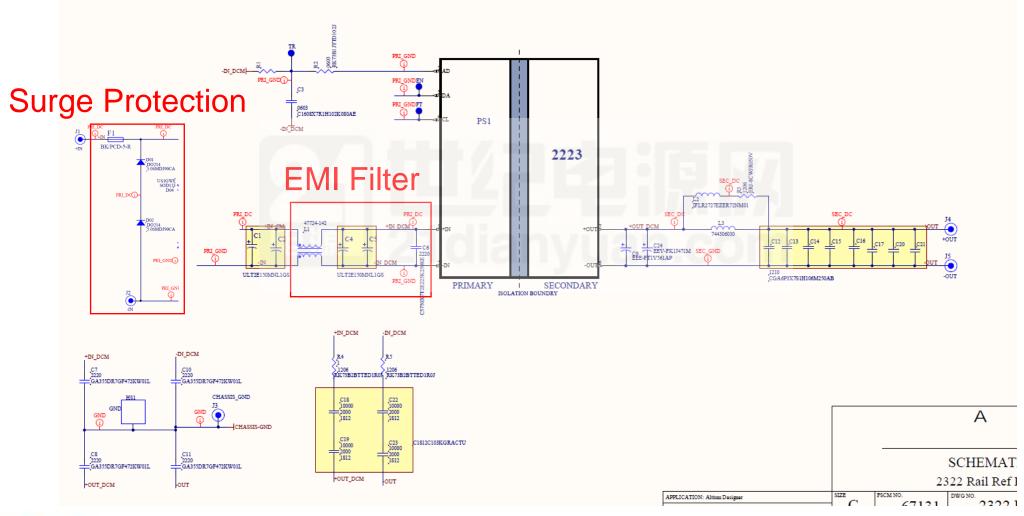

Vin Range (nominal)	3.3Vout	5Vout	12Vout	15Vout	24 Vout	28Vout	48Vout
43-154	40W	60W	120W	120W	120W	120W	120W
14-72	35W	50W	100W	100W	100W	100W	100W
9-50			60W	60W	60W	60W	60W

- >500W/in³ power density
- Up to 90.5% peak efficiency
- Target markets include rail, military, communications
- OV, OC, UV, short circuit and thermal protection
- Array up to 8 units for 960W (no power derating)

0.97 x 0.90 x 0.28 in

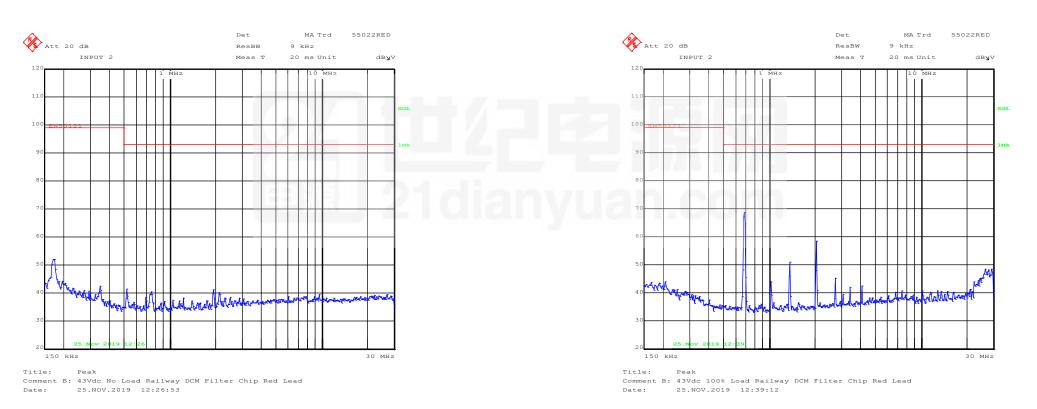
DCM2322 Reference Design

Complies with


 – EN50121-3-2 Railway Applications – Electromagnetic compatibility Part 3-2: Rolling stock – Apparatus

- Surge tests are complete

- Passed differential mode surge (+/-1kV, 42Ω) tests
- Passed common mode surge (+/-2kV, 42Ω) tests



Railroad DCM2322 (43-154Vin range)

DCM2322 Conducted Emissions Test Results: 43V_{IN}

0% Load

100% Load

Figure: EMI scans per EN50121-3-2 for $43 - 154V_{IN}$ to $24V_{OUT}$ DC system

DCM2322 Conducted Emissions Test Results: $100V_{IN}$

100% Load

0% Load

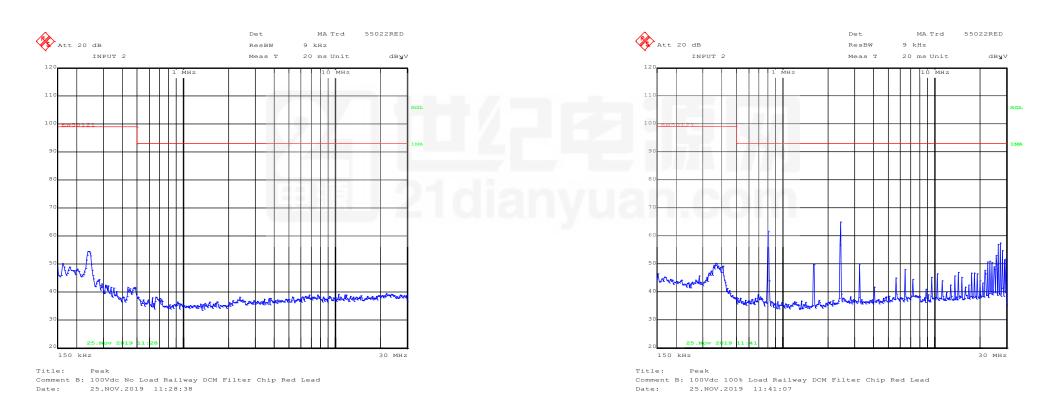


Figure: EMI scans per EN50121-3-2 for 43 - $154V_{IN}$ to $24V_{OUT}$ DC system

DCM2322 Conducted Emissions Test Results: $154V_{IN}$

0% Load

Figure: EMI scans per EN50121-3-2 for 43 - $154V_{IN}$ to $24V_{OUT}$ DC system

100% Load

DCM2322 Surge Test Results: 100V_{IN}

Differential mode +1kV, 42ohm at 100% Load

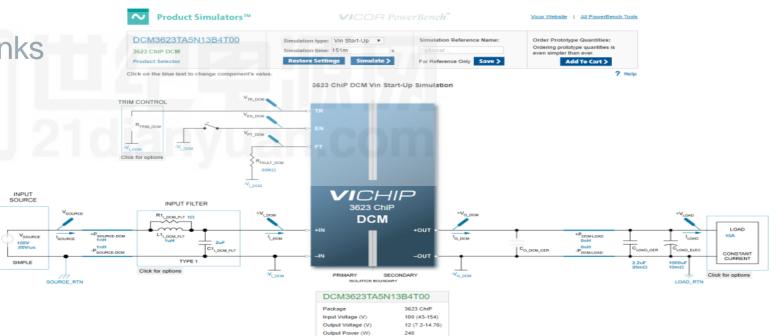
Differential mode -1kV, 42ohm at 100% Load

Figure: Surge as per EN50121-3-2 for 43 - $154V_{IN}$ to $24V_{OUT}$ DC system

DCM2322 Surge Test Results: 100V_{IN}

Common mode +2kV, 42ohm at 100% Load

Common mode -2kV, 42ohm at 100% Load


Figure: Surge as per EN50121-3-2 for 43 - $154V_{IN}$ to $24V_{OUT}$ DC system

Tools and Design Guides to accelerate time to market

- Simulators : Start-Up, Shutdown, Steady State, V_{IN} Step, Load Step
- Power System Designer
- Evaluation Boards
- Calculators : Trim, Heat Sinks
- Additional collateral
 - Comprehensive design guide
 - Reference Designs (Schematics, Simulations, Layouts)
 - □ Array and PoL Operation
 - Thermal calculator

VICOR

20

Operating Temperature (*C) -40 to 125

Output Current (A)

DCM Design Guide

- http://www.vicorpower.com/documents/design_guides/DG-DCM-Design-Guide-VICOR.pdf
- Covers various topics, such as
 - Compliance recommended fuse
 - Input, Output filter design
 - Operation of DCMsParallel operation
 - External loop control for tighter regulation
 - Thermal management
 - Layout guidelines
 - Soldering guidelines

DCM™ Design Guide

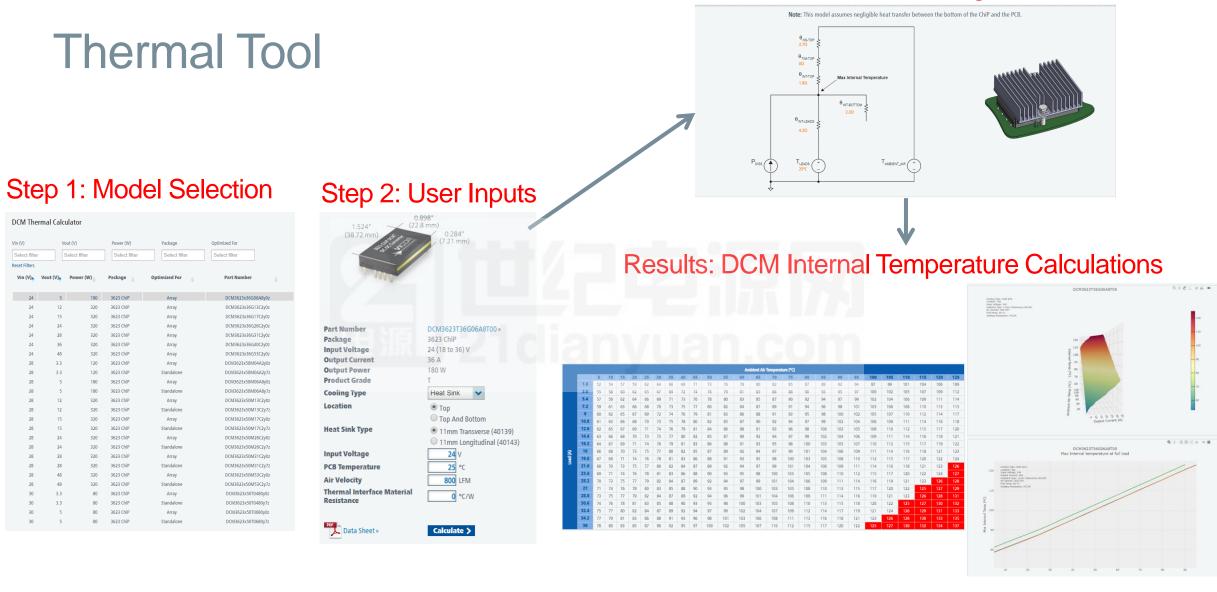
EMI Reference Designs box link

- EMI reference designs are available please see local representative or sales office
- Consists of

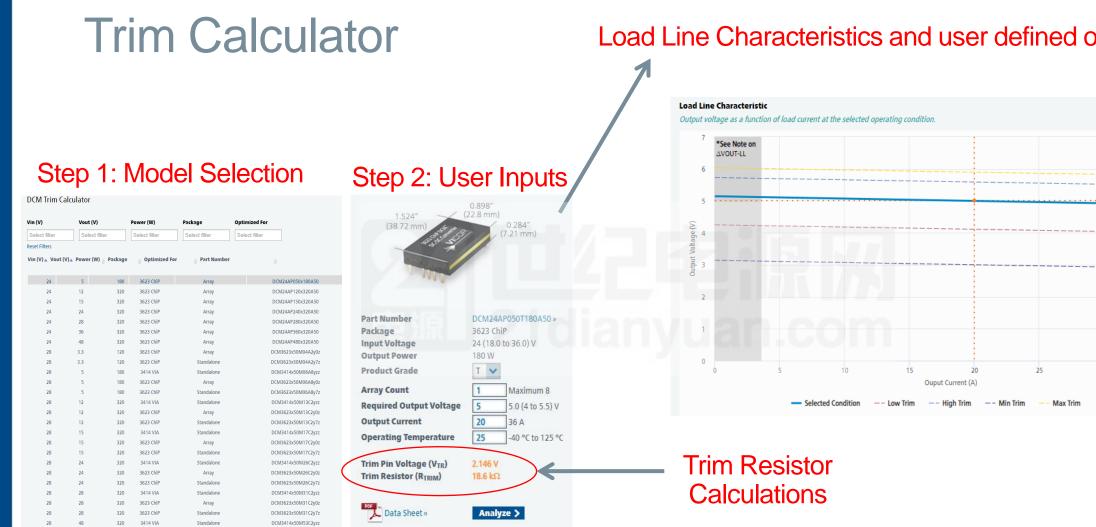
VICOR

- □ Schematic
- □ BOM
- □ Layout files
- □ Test Reports

©2019 Vicor


Heat Spreaders for ChiP DCMs

http://www.vicorpower.com/accessories/thermal-management


Package Size	Part Number	RoHS Compliant	Recommended Land Pattern	Product Assembly Drawing	Outline Drawing	3-D Model Drawing	
3623 ChiP	47272	Yes	PDF	PDF	PDF DXF	STEP	ADD TO CART
4623 ChiP	47273	Yes	PDF	PDF	PDF DXF	STEP	ADD TO CART
6123 ChiP	47274	Yes	PDF	PDF	PDF DXF	STEP	ADD TO CART

User Defined Configuration

Load Line Characteristics and user defined operating point

35

30

Vicor Online Tools

Tools and references to select, architect and implement power systems

Architect your power system through analysis of topology and efficiency

OPEN

Simulators

Precision modeling of electrical and thermal behavior of Vicor products

OPEN

Calculators

Guidance for determining accessory components for your power design

OPEN

Useful Vicor Website Links

DCM[™] DC-DC Converter Module Product Family <u>www.vicorpower.com/dc-dc/isolated-regulated/dcm</u>

DCM Design guide

http://www.vicorpower.com/documents/design_guides/DG-DCM-Design-Guide-VICOR.pdf

DCM Trim Calculator

http://spicewebprd.vicorpower.com/apps/dcmTrimCalculator/Calculator.php

