Low EMI power design ADI Silent Swither products

2019-6-29

We solve the Three Key Power Supply

Performance Metrics Form Factor, Efficiency, EMI

Power Innovation Technologies

The Problem in Traditional Synchronous Buck Converters High di/dt Currents in SMPS Hot Loops Create EMI

Parasitic inductance due to copper traces, bond wires, ESL of capacitors and FET internal metal

Excessive rings at the switching edges cause conductive noise and radiation

Minimizing Hot Loop

- With monolithic switcher, the best way is to place the low ESL input capacitor as close to the $\mathrm{V}_{\mathbb{I N}}$ and GND as possible
- A solid GND plane with minimum distance to the hot loop is one of the most effective ways to reduce EMI

LARGE EMil BURST! Occurs every switching cycle!

Silent Swither 1

Innovation - Silent Switcher

Silent Switcher 1

5V 5A Step-Down Converter

Silent Switcher Eliminates Switch Ringing

Silicon Die

LT8610: Wirebonded in MS16E

LT8614: Silent Switcher 1: Magnetic cancellation + CuPillar Flip-Chip

Silent Switcher Platform - Innovations To Deal with Hot Loop

- Buck regulator platform
- 20dB EMI improvement - No compromise in efficiency and size!
- Offers customers:
- High frequency
- High efficiency
- High current
- Low EMI noise
- Solder joint reliability
- Technologies
- Circuits
- Process/devices
- Package

5V 4A Step-Down Converter

- In-package passive

Figure 2. LT8610 and LT8614 700kHz 14 V to 3.3V 2A Radiated EMI in GTEM Corrected for OATS

Silent Swither 2

Silent Switcher 2:

Flip chip on laminate (FCOL) and Cap-In-Package

Imporve Performance

1ns/DIV

Silent Switcher 2 Example Excellent EMI Test Results

A Paradigm Shift
 Fast Switching Enables Ultralow EMI and High Efficiency

No slew rate limit on switching node necessary to achieve low EMI!

- Hot loop area and inductance virtually zero
- Extremely fast switching
- Neglectable overshoot and no parasitic oscillation on switching node
- Dead time only 1 ns

Unmatched switching performance!

- Silent Switcher ${ }^{\circledR} 2$ architecture
- Internal bypass capacitors reduce radiated EMI
- Optional spread spectrum modulation
- Ultralow EMI on any PCB, eliminate PCB layout sensitivity
- Wide input range: 3.0V to 42V

5V/4A, 3.3V/4A 2MHz Step-Down Converter

Silent Switcher 2 Platform

- Buck Regulator Platform
- Offers to the customer:
- High Frequency
- High Efficiency
- High Current
- Low EMI Noise
- Solder Joint Reliability
- Tech:
- Circuits
- Process/Devices
- Package

- In-Package Passives

LT8650S Passes EMI Tests

Conducted EMI Performance

Radiated EMII Performance (CISPR25 Radiated Emission Test with Class 5 Peak Limits)

Silent Switcher Family

DEVICE	\# OF OUTPUTS	$\mathrm{V}_{\text {IN }}$ RANGE	OUTPUT CURRENT	PEAK EFFICEINCY AT 2MHz, 12 V TO 5 V		FEATURES	PACKAGES
LT8650S	2	3V-42V	$4 A+4 A$ on both channels or 6 A on either channel	94.60\%	$6.2 \mu \mathrm{~A}$	Silent Switcher 2	$6 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.95 \mathrm{~mm}$ LQFN
LT8645S	1	$3.4 \mathrm{~V}-65 \mathrm{~V}$	8A	94\%	$2.5 \mu \mathrm{~A}$	Silent Switcher 2	$6 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.95 \mathrm{~mm}$ LQFN
LT8643S	1	$3.4 \mathrm{~V}-42 \mathrm{~V}$	6A continuous 7A peak	95\%	$120 \mu \mathrm{~A}$	Silent Switcher 2, external compensation	$\begin{aligned} & 4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.94 \mathrm{~mm} \\ & \text { LQFN } \end{aligned}$
LT8640S	1	$3.4 \mathrm{~V}-42 \mathrm{~V}$	6A continuous 7A peak	95\%	$2.5 \mu \mathrm{~A}$	Silent Switcher 2	$4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 0.94 \mathrm{~mm}$ LQFN
LT8609S	1	$3 \mathrm{~V}-42 \mathrm{~V}$	2 A continuous 3 A peak	93\%	$2.5 \mu \mathrm{~A}$	Silent Switcher 2	$3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.94 \mathrm{~mm}$ LQFN
$\begin{aligned} & \text { LT8640 } \\ & \text { LT8640-1 } \end{aligned}$	1	$3.4 \mathrm{~V}-42 \mathrm{~V}$	5A continuous 7A peak	95\%	$2.5 \mu \mathrm{~A}$	Silent Switcher, LT8640 pulse skipping, LT8640-1 forced continuous	$3 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN-18
LT8641	1	$3 \mathrm{~V}-65 \mathrm{~V}$	3.5A continuous 5A peak	94\%	$2.5 \mu \mathrm{~A}$	Silent Switcher	$3 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN-18
LT8614	1	$3.4 \mathrm{~V}-42 \mathrm{~V}$	4A	94\%	$2.5 \mu \mathrm{~A}$	Silent Switcher. Low ripple Burst Mode operation	$3 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN-18

Package technology improves performance, options for customer

LT8610	LT8640	LT8640S
MSOP-16	MSOP-16	MSOP-16
		(BT laminate LGA)

LTM8053 6×9 BGA

40Vin Step-Down μ Module Regulator Size Comparison

40Vin Silent Switcher μ Module Regulators

	LTM8074	LTM8063	LTM8065	LTM8053
Silent Switcher	Yes			
CISPR22 Class B Compliant	Yes			
Vin Range	3.2 V to 40V	3.2 V to 40V	3.4 V to 40V	3.4 V to 40V
Vout Range	0.8 V to 12 V	0.8 V to 15 V	0.97 V to 15 V	0.97 V to 15V
Iout	1.2A (Continuous) 1.75A (Peak)	2A (Continuous) 2.5A (Peak)	2.5A (Continuous) 3.5A (Peak)	3.5A (Continuous) 6A (Peak)
Switching Frequency		200 kHz to 2.2 MHz	200 kHz to 3 MHz	200 kHz to 3 MHz
Package Size (mm)	$4 \times 4 \times 2.22$	$4 \times 6.25 \times 2.22$	$6.25 \times 6.25 \times 2.32$	$6.25 \times 9 \times 3.32$
Package Type	BGA	BGA	BGA	BGA
RPL Schedule	Q3 CY2018	Released		

Application

Improve System performance

Silent Switcher Application

Silent Switcher Application

Silent Switcher Application

AD9625-2.6 GHz Dynamic Performance						
Input Frequency (MHz)	SNRFS (db) Baseline Power Supply				LTM8065 Version1	LTM8065 Version 2
	57.01	57.03	57.01	Baseline Power Supply	LTM8065 Version1	LTM8065 Version2
	56.53	56.49	56.54	78.41	79.72	80.11

AD9625 FFT using LTM8065 (AIN $=1349 \mathrm{MHz}$)

AD9625 FFT using LTM8065 + LC Filter (AIN $=1349 \mathrm{MHz}$)

Baseline Power Supply		Voltage (V)	Current (A)	Power (W)
	PIN	11.729	0.676	7.929
	AVDD_1.3V	1.268	1.222	1.549
	DRVDD_1.3V	1.301	0.521	0.678
P	DVDD_1.3V	1.305	0.406	0.530
0	AVDD_2.5V	2.589	0.408	1.056
U	DRVDD_2.5V	2.590	0.0047	0.012
T	DVDD_2.5V	2.590	0.0001	0.0003
	DVDDIO_3.3V	3.301	$0.00 \cap 4$	0.0013
			POUT TOTAL:	3.827
			Efficiency (\%):	48.26

LTM8065 Version 2	Voltage (V)	Current (A)	Power (W)

Silent Switcher Application

EVAL-AD9625 Evaluation Board

REVISED Evaluation Board USING LTM8065 POWER SOLUTION

Test Guaranteed VS Design Guaranteed

- Low $20 \mu \mathrm{~A}$ Quiescent Current

- +3.5 V to +30 V Wide Input Voltage Range, +45 V Tolerant
- Operates Through Cold-Crank Conditions
- Low-Dropout Voltage of 280 mV at 200 mA
- Up to 200mA Output Current Capability
- Stable Operation with Tiny 4.7μ F Output Capacitor
- User$\begin{array}{cc}\text { ser- } \\ +3 . & 200 \text { A. AUtOMOtIVE } \\ +1 . & \text { Quİ } \\ \text { Rescent Currenty }\end{array}$
- Open
- Fixed
- High-
- Thern
- Opera
- Autor

ELECTRICAL CHARACTERISTICS (1

otherwise note

 Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SETOV INPUT (TRI-MODE) | | | | | | |
| SETOV Input Leakage Current | | $\begin{aligned} & \text { SET }=\text { HIGH, VSETOV }=5 \mathrm{~V} \\ & \text { or SET }=\text { GND, VSETOV }=5 \mathrm{~V} \end{aligned}$ | | 1 | | $\mu \mathrm{A}$ |
| SETOV Low-Level Input Voltage | VILSETOV | SET $=$ GND, VSETOV $<$ VILSETOV or places device in +3.3 V fixed output-voltage mode | | | 0.4 | V |
| SETOV High-Level Input Voltage | VIHSETOV | SET $=$ GND, VSETOV $>$ VIHSETOV or places device in +5 V fixed outnut-voltace mode | $\begin{aligned} & \text { Vout } \\ & -0.4 \end{aligned}$ | | | V |

Note 2: Production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Overtemperature limits are guaranteed by design.

Design Tools: Step-by-Step Power Supply Design

Enter specs,
search solution.

Power Supply
Schematic.

Efficiency \& Power Loss

Loop Stability \& Transient

LTspice

